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It is a significant feature of most gas-fluidized beds that they contain rising ‘bubbles’ 
of almost clear gas. The purpose of this paper is to account plausibly for this 
remarkable property first by supposing that primary and secondary instabilities of the 
fluidized bed generate compact regions of above-average or below-average particle 
concentration, and second by invoking a mechanism for the expulsion of particles from 
a buoyant compact blob of smaller particle concentration. We postulate that the rising 
of such an incipient bubble generates a toroidal circulation of the gas in the bubble, 
roughly like that in a drop of liquid rising through a second liquid of larger density, 
and that particles in the blob carried round by the fluid move on trajectories which 
ultimately cross the bubble boundary. Numerical calculations of particle trajectories 
for practical values of the relevant parameters show that a large percentage of particles, 
of such small concentration that they move independently, are expelled from a bubble 
in the time taken by it to rise through a distance of several bubble diameters. 

Similar calculations for a liquid-fluidized bed show that the expulsion mechanism is 
much weaker, as a consequence of the larger density and viscosity of a liquid, which 
is consistent with the absence of observations of relatively empty bubbles in liquid- 
fluidized beds. 

It is found to be possible, with the help of the Richardson-Zaki correlation, to adjust 
the results of these calculations so as to allow approximately for the effect of 
interaction of particles in a bubble in either a gas- or a liquid-fluidized bed. The 
interaction of particles at volume fractions of 20 or 30 YO lengthens the expulsion times, 
although without changing the qualitative conclusions. 

1. Introduction 
Compact regions of low particle concentration may be observed to rise through a 

gas-fluidized bed when the gas velocity is sufficiently large. These buoyant ‘bubbles ’ 
have steady shapes resembling gas bubbles rising through liquid, as may be seen from 
many published photographs. The bubbles may be formed by discharging gas from an 
orifice in the interior of the fluidized bed, or they may be a consequence of non- 
uniformity of the porosity of the base plate. There is a common belief among chemical 
engineers that bubbles may also form spontaneously in the interior of a gas-fluidized 
bed. 

It is generally agreed that the amplitude of vertically propagating plane-wave 
disturbances to a statistically uniform bed with particle volume fraction between 0.4 
and 0.5 may grow exponentially under certain conditions (see for example Batchelor 
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(b)  

FIGURE 1. (a) Photograph of a blown half-bubble rising through a gas-fluidized bed against a nearly 
vertical glass plate, taken by a camera moving with the bubble. (From Reuter 1963.) (b) X-ray image 
showing the variation of particle concentration in a transition layer at the bubble surface. The bands 
correspond to different values of the concentration, and the value in the interior of the bubble is 
effectively zero. (From Yates, Cheesman & Sergeev 1994.) 

1988). There is then the possibility of a secondary instability which overturns alternate 
horizontal layers in which the vertical gradient of particle concentration is positive 
(Batchelor 1993). Compact regions of below-average or above-average concentration 
with linear dimensions related to the wavelengths of the fastest-growing disturbances 
in the primary and secondary instabilities may thus be generated, and the thesis to be 
adopted here is that the buoyant compact regions of below-average concentration 
become visible bubbles. 

A prominent and persistent feature of observed bubbles in gas-fluidized beds, 
regardless of the method of their formation, is that the concentration of particles inside 
a bubble is small. This may be inferred from the fact that the observed speed with 
which a bubble rises relative to the particles is approximately 1 .O (gR)l’*, where R is the 
radius of the sphere having the same volume as the bubble, which is close to the speed 
of a large gas bubble rising through liquid. (For data about bubbles in fluidized beds 
and theories devised to account for some of the data, see Davidson & Harrison 1963 
and the useful review article by Davidson, Harrison & Guedes de Carvalho 1977.) 
Direct examination of a bubble in a fluidized bed gives an impression of relative 
emptiness of the interior. In the case of blown half-bubbles rising in a fluidized bed 
against a nearly vertical glass plate, like that shown in figure 1 (a), the emptiness is often 
evident. Recent observations of particle concentration in and near a blown bubble in 
a gas-fluidized bed using X-rays have revealed clearly a layer surrounding the bubble 
in which the concentration varies rapidly from a value near the maximum for 
fluidization at the outer boundary to a value near zero at the inner boundary (see figure 
1 b). 

It seems very unlikely that an instability of the initially uniform distribution of 
particle concentration in a gas-fluidized bed could cause such a complete separation of 
particles and fluid as to produce compact regions in which the particle concentration 
is relatively small. Some further separation process seems to be needed, and one of us 
has speculated that this additional process is an expulsion of particles from the interior 
of a bubble by the centrifugal force on a particle trying to follow the circulating motion 
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of the gas inside the rising buoyant blob (Batchelor 1991). The purpose of the present 
paper is to test this speculation by determining numerically the rate at which small 
particles in the interior of a rising buoyant blob move outward across the blob 
boundary as a consequence of gravity and inertia forces acting on the particle. 
Investigations of the trajectories of small particles moving in a given fluid flow field are 
not uncommon (see, for example, Maxey & Corrsin 1986), and are usually concerned 
with the trapping of particles within certain portions of the flow field. In our case the 
opposite process of expulsion of particles from a buoyant blob in a fluidized bed is of 
interest. The conditions we shall assume make it almost self-evident that expulsion of 
particles from a rising buoyant blob in a gas-fluidized bed does occur, but we believe 
the quantitative aspects of the particle trajectories have some value. 

Empty bubbles in liquid-fluidized beds appear not to have been observed, even 
though a uniform liquid-fluidized bed may be unstable. In $5 we consider whether the 
proposed expulsion process operates in the case of a liquid-fluidized bed. 

We note some early related work by Davidson & Harrison (1963, chap. 5) who 
address the following question: what are the conditions under which an empty bubble 
will be destroyed by their postulated process of entrainment of particles into the 
bubble? Our objective on the other hand is to clarify the process of formation of an 
empty bubble, beginning with a compact region of below-average concentration of 
particles. The general conclusions of the two investigations appear to be compatible, 
although the mechanisms concerned are essentially different and are relevant to 
different parameter ranges. The parameter values that we are concerned with (e.g. 
those represented in figure 8) are such that the minimum fluid velocity for fluidization, 
estimated using equation (2.4), is small by comparison with the bubble rise speed, 
indicating that the wake-entrainment effects considered by Davidson & Harrison 
(1963) are small for bubbles of the kind considered here. 

2. The relevant particle and fluid properties for a gas-fluidized bed 
It is desirable to take note of representative properties of the particles and fluids used 

in gas-fluidized beds in industry and the laboratory so that we can see which 
mechanical processes are relevant. The shape of the particles is not very important, 
provided they are compact, and we shall suppose them to be solid spheres. The 
densities are normally of order unity, and it is convenient to take the particle density 
pp as 1 .OO g ~ m - ~ ,  or sometimes as an integral multiple thereof, when a numerical value 
is needed. The fluidizing fluid will be assumed to be air at 20 "C and 1 atmosphere, with 
density pf = 1.205 x g cm-' s-'. Guided by 
published photographs of bubbles in gas-fluidized beds, we take 2 cm as a typical value 
of the radius R of a sphere of the same volume as a bubble. 

Values of the particle radius a between 30 pm and 300 pm are common in fluidized 
beds. We shall require an expression for the drag force exerted by the fluid on an 
isolated spherical particle moving with steady speed V, relative to axes fixed in the fluid 
far from the particle, and in order to embrace this range of values of a and the 
corresponding values of V, for particles falling under gravity the expression for the drag 
must be valid for both small and large values of the particle Reynolds number 

g cmP3 and viscosity p = 1.81 x 

We shall write the drag force on such an isolated particle as 

6xap v, D ,  
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where D ,  is a non-dimensional drag coefficient given empirically by 
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D, = (1 + 0.1 3R:’2)2 (2.3) 

according to Foscolo & Gibilaro (1984). 
An expression for the mean velocity of the particles in a statistically homogeneous 

dispersion moving under the action of a common force - as in parts of the fluidized bed 
away from bubbles - is also relevant. We shall make use of the empirical relation due 
to Richardson & Zaki (1954), namely 

5 = v,(1 -w, (2.4) 

where 5 is the mean velocity of particles with volume fraction 4, relative to the mean 
volume-flux velocity of the fluid, and n varies monotonically with the Reynolds number 
(2.1) from 4.65 at R,+O to 2.39 at R,+ 00. The strong dependence of 5 on 4 here is 
a consequence of the hydrodynamic interaction of particles. 

Now the gas within a buoyant blob rising through the fluidized bed with speed W 
relative to the particles in the bed is set into motion by the rising of the blob. We 
suppose for the moment that the blob is effectively empty of particles, in which event 
W is known empirically to be about 1 .O (8R)l12. According to our simple model of a 
buoyant blob, the blob is spherical, the interior gas motion is driven by the tangential 
stress at the blob boundary exerted by the particles and fluid streaming around the 
rising blob, and is axisymmetric, with closed nested streamlines like those in a toroidal 
vortex. Real bubbles in a gas-fluidized bed have an internal circulation with closed fluid 
streamlines which extend a little beyond the visible bubble boundary into a ‘cloud’, but 
we shall suppose the penetration distance to be negligibly small. It is natural also to 
suppose that the magnitude of the interior gas velocity is comparable with that of the 
exterior streaming motion (velocities being relative to the blob in both cases). An 
important consequence of this assumption is that the centrifugal force on a particle 
carried round by the fluid inside a spherical bubble is of the same order of magnitude 
as gravity. 

We shall suppose for convenience in the later numerical calculations that the velocity 
of the fluid inside a spherical bubble of radius R and relative to it is represented by the 
simple stream function 

where the origin of the spherical polar coordinate system is fixed at the bubble centre 
and the constant u, is the fluid speed at the centre of the sphere. The corresponding 
streamlines are shown in figure 2. This interior velocity distribution is actually the same 
as that in two well-known flow fields with a spherical boundary, namely a small drop 
of viscous liquid rising under gravity in a second fluid of different density and viscosity, 
and a Hill’s spherical vortex (Batchelor 1967). However, that coincidence is of no 
significance here. The flow field (2.5) is not intended to represent accurately the gas flow 
in the interior of a real bubble in a fluidized bed. Our intention is simply to show that 
rapid particle expulsion can occur when the interior gas flow is primarily toroidal with 
a velocity of certain magnitude. 

As already stated we suppose that the rise speed of the blob, W, may be equated in 
order of magnitude with a velocity representative of the interior fluid motion, and for 
simplicity we take 

uo z W w  (gR)l12. (2.6) 
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FIGURE 2. Streamlines of the assumed steady flow of fluid within the bubble. 

Finally there is the question: what value of the concentration of particles in the 
interior of the buoyant blob should be assumed? It is known that there are effects of 
hydrodynamic interaction of the particles in a homogeneous dispersion which are 
significant when the particle volume fraction 4 exceeds a few percent. We should like 
to be able to show whether the particles in a compact region of a fluidized bed in which 
the concentration is smaller than that in the remainder of the bed are expelled by inertia 
forces on the particles. The compact regions of smaller concentration are believed to 
be the end product of primary and secondary instabilities of an initially uniform bed 
(Batchelor 199 I), but no information about the fluctuations in particle concentration 
brought about by nonlinear processes in the last stages of instabilities is available. One 
might guess that, in an initially uniform bed for which q5 = 0.4 say, positive and 
negative fluctuations in the particle concentration of magnitude between 25 and 50 YO 
of the overall mean are generated in this way. If so, buoyant blobs in which 4 initially 
lies between 0.2 and 0.3 are to be expected and it is desirable to include the effects of 
hydrodynamic interaction of particles in an accurate analysis of particle expulsion 
from the blob. 

However, taking account of hydrodynamic interaction is difficult enough in the 
relatively simple case of statistical homogeneity of the particle positions and motions, 
and is not within our capabilities in the more complicated geometry of a buoyant blob. 
We propose therefore to assume initially that the particle concentration within the 
buoyant blob is sufficiently small for the particles to move independently of each other. 
This should be permissible when the particle volume fraction is less than a few percent, 
as it is in the final stages of an expulsion process. Later in 56 we shall put forward a 
hypothesis using (2.4) from which the effect of particle interactions on the rate of 
expulsion of particles at larger concentrations may be estimated roughly. 

Here are the specific values and assumptions on which our calculations of the 
trajectories of particles in a buoyant blob in a gas-fluidized bed will be based: 

(1) the values of pf and ,u are those for air at NTP; 
(2) pp = 1 g ern+ (or an integral multiple thereof); 
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Reynolds number, namely (2.3), and (ii) particle concentration, namely (2.4); 
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( 3 )  we adopt empirical relations between drag on a moving particle and (i) particle 

(4) R (equivalent blob radius) = 2 cm; 
( 5 )  particle volume fraction within blob is so small that particles move in- 

(6 )  blob rise speed W x 1.0 (gR)ll2; 
(7)  fluid flow within an empty blob is given by (2.5), with uo = W. 

dependently ; 

3. The governing equation for a particle in a bubble in a gas-fluidized bed 
A particle within a buoyant blob of fluid moves under the influence of gravity, its 

own inertia, and the viscous resistance exerted by the fluid. Hence, in accordance with 
the assumptions described in $2,  and with neglect of all terms containing the fluid 
density as a factor, the equation of motion of a particle is 

dv 
dt m - = mg - 6xpa(v - u) D,u-ul, (3.1) 

where m is the particle mass, v is the particle velocity, u is the ambient fluid velocity 
at the instantaneous position of the particle, and the non-dimensional drag force Dlo-ul 
depends on the particle Reynolds number 2apfl v-ul/p in accordance with (2.3). 

An important parameter of this equation (3.1) is the viscous relaxation time of a 
particle (that is, the time for the relative velocity of a particle acted on only by the 
viscous fluid resistance to relax exponentially back to zero), namely 

m 2a2pp 
TO=---=-- 6npa 9,u 

Equation (3.1) can be rewritten in terms of 70 as 

dv v-u 
dt 70 
- = g--D,,-,,. (3.3) 

This is one of the basic equations of ‘dusty-gas theory’ (Marble 1970), and is normally 
used in the low-Reynolds-number form for which D,u-ul = 1. In the calculations to be 
reported here, the dependence of the drag coefficient on Iv - uI is important. 

The terms in (3 .3 )  may be made dimensionless using R and uo as reference quantities, 
whence 

wherej is the unit vector in the downward vertical direction and 

T = tuo/R, U = u/uo, V = u/u0. (3.5) 

A particle trajectory thus depends on the two dimensionless parameters 

Sbeing the Stokes number and Fthe Froude number. However, since the representative 
fluid speed in the interior of the bubble (u,) is being equated to the bubble rise speed 
W, which is empirically equal to (gR)’12, we see that F is approximately unity, 



Expulsion from a buoyant blob in a fluidized bed 69 

a (run) RO 4 S 

10 1.55 x 10-2 5.90 x lo-' 2.72 x lo-* 
20 1.17 x lo-' 1.18 x loo 1.09 x lo-' 
30 3.71 x lo-' 1.77 x loo 2.45 x lo-' 
40 8.20 x lo-' 2.36 x loo 4.35 x lo-' 
50 1.49 x loo 2.95 x loo 6.80 x lo-' 
60 2.40 x loo 3.54 x loo 9.79 x 10-1 
70 3.54 x loo 4.13 x loo 1.33 x loo 
80 4.94 x 100 4.72 x loo 1.74 x loo 
90 6.57 x loo 5.31 x loo 2.20 x loo 

100 8.44 x loo 5.90 x loo 2.72 x loo 
150 2.12 x 10' 8.85 x loo 6.12 x loo 
200 3.90 x 10' 1.18 x 10' 1.09 x 10' 
250 6.14 x 10' 1.47 x 10' 1.70 x 10' 
300 8.78 x 10' 1.77 x 10' 2.45 x 10' 

TABLE 1.  Values of the dimensionless parameters assuming air at 20 "C and atmospheric 
pressure to be the suspending fluid, having density p, = 1.205 x g cm-5 and viscosity 
,u = 1.81 x g an-' s-l. The particle density p p  is taken to be 1 .O g 

corresponding to the near equality of inertial and gravitational forces on a particle. 
Thus S is the only variable parameter entering the governing equation explicitly. This 
is a distinguishing feature of a 'dusty-gas' flow system in which the fluid velocities are 
themselves generated by gravity. With the replacement of uo by W = (gR)'I2, S can be 
written as 

2a2g'12pp, 
9R'I2p 

S =  (3.7) 

The fluid velocity u in (3.1) is evaluated at the instantaneous position of the particle, 
and in general an equation of motion of the fluid which includes the force exerted on 
the fluid by particles should be introduced for the determination of u. If the mean 
spacing of particles in the buoyant blob is small compared with the blob diameter, we 
may regard the viscous force exerted on the fluid by the particles as equivalent to a 
distributed body force per unit volume equal to 

v-u 
D,,-,, = 4 P p  - -N( v- v) DIO+ R S  70 

where N = 4pp/pf is the particle mass loading (that is, the fraction of the total mass 
of the mixture contributed by the particles). Since I V- qD,,,! is in general of order 
unity, we see that the ratio of this body force to the fluid inertia force (of magnitude 
p f u i / R )  is N / S .  Hence if N / S  < 1 the fluid motion is not appreciably affected by the 
presence of the particles, and may be regarded as a given consequence of some external 
factor (which in our case is the tangential stress at the blob boundary associated with 
the rising of the buoyant blob under gravity). Now with p p  = 1 g ~ r n - ~  and the values 
of pf and p proposed in $2, and 4 chosen as 0.01 in keeping with our neglect of 
hydrodynamic interactions of particles, we have N = 8.3. The ratio N / S  is then equal 
to 0.76 when a = 200 pm (a relatively large value) and R = 2 cm, and is proportional 
to a-2 (for given 4); on the other hand when a is small the particles tend to move with 
the fluid and I V -  v( = O(a2). It appears therefore that the presence of particles in the 
middle of the size range may have some effect on the fluid flow field. However, the 
order-of-magnitude estimate (2.6) is still likely to hold, and we shall regard the fluid 
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flow field in the buoyant blob as given, and as being described by (2.5), the penalty 
being that our results may be strictly applicable only to very small concentrations of 
particles in the buoyant blob. 

The final preparation for the numerical calculation of particle trajectories is the 
construction of table 1 giving values of the Reynolds number R, and the Stokes 
number S as functions of the particle radius a on the basis of the assumptions listed 
at the end of 52, It is convenient to include values of 2au,pf /p(=  R,) because the 
Reynolds number of the flow about a particle moving with velocity u--u relative to the 
fluid locally is needed for substitution in (2.3) and is 

This Reynolds number [WID;,! determines the drag coefficient D,,-,,, and so R, is a second 
governing parameter, additional to but less important than S.  

4. Particle trajectories 
Equation (3.4), expressed as a system of four coupled first-order ODES for the radial 

(a) and axial ( 2 )  coordinates of a particle and their time derivatives, may be solved 
numerically by fourth-order Runge-Kutta integration for the case of motion confined 
to a vertical plane through the bubble axis. (In the absence of an azimuthal force, any 
initial motion of a particle about the bubble axis would soon be damped out and could 
make no essential contribution to particle expulsion.) For definiteness, the initial 
particle velocity at the point of release is chosen so that the initial particle acceleration 
is zero. Dimensionless time steps of 0.01 are sufficiently small to allow the particle 
motion to be tracked accurately for even the smallest values of S considered. Figure 3 
shows calculated trajectories for a number of particle radii ranging from 20 to 80 pm 
following release on the equatorial plane at evenly spaced values of the non- 
dimensional radial coordinate u between 0 and 1. Small particles follow the fluid 
streamlines closely owing to the small effects of particle inertia and gravity relative to 
viscous drag. In the limit of vanishing particle radius S+ 0 and equation (3.4) formally 
reduces to Y =  V, and the trajectories coincide with the fluid streamlines shown in 
figure 2. The effect of inertia and gravity for S g 1 is to cause only small perturbations 
to this limiting motion, and small effects accumulate to produce a significant deviation 
from the fluid streamlines (and, in particular, expulsion) only after considerable time 
has elapsed. Outward spiralling and sedimentation relative to the fluid are of equal 
strength, since F = 1.  Each rapidly becomes more pronounced with increasing particle 
size. 

Several features of the trajectories merit discussion. First, owing to the directional 
bias imparted by gravity, expulsion takes place almost exclusively below the equatorial 
plane. Second, there is a hemispherical cap-shaped region at the top of the bubble 
whose thickness increases with a and which is devoid of particle path lines. Particles 
initially in the cap are expelled at an early stage, and are not replaced because particles 
moving up near the axis have insufficient upward inertia to overcome both viscous drag 
and gravity and re-enter the cap region. Third, there is manifested clearly in figure 3 
a focusing of trajectories. This is to be expected, as there is an inherent discreteness 
associated with the expulsion process. In particular, there must exist critical values of 
the initial radial position coordinate (a,) at which the number of circuits made by a 
trajectory before exiting jumps by one. A particle may just fail to reach the bubble 
boundary and so makes one more circuit. Thus, the expulsion time Kzi t  does not vary 
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= 0.109, R, = 1.18 = 0.435, R, = 2.36 

FIGURE 3. Trajectories (relative to the bubble) of particles of radius a released on a horizontal line 
through the centre of a rising spherical bubble in an air-fluidized bed. Darkened circles in (a), (b) and 
(c) indicate the three particle stagnation points. 

continuously with ao, as may be seen in figure 4. This sensitivity of Kzit to initial 
conditions must be associated with a relative insensitivity of particle paths to values of 
a. in the intervals between the critical values, whence the focusing of trajectories. 

Other features of figures 3 and 4 are closely related to the existence of three particle 
stagnation points in a meridian plane (marked with darkened circles in figure 3a-c). At 
these points there is a balance between gravitational down-force and drag due to fluid 
up-flow, and a particle released there with zero velocity remains stationary. The 
particle stagnation point lying on the a-axis is a centre of rotation (locally) which is 
displaced horizontally inwards by gravity from the eye of the toroidal vortex of the 
fluid flow. The closer is the point of particle release to this centre, the longer is the exit 
time, because the force on the particle causing it to spiral outwards goes to zero linearly 
with distance from the centre, giving the main spike in figure 4 at which Kzlt diverges. 
The particle stagnation points on the z-axis have the character of saddle points. The 
critical values of a. correspond to trajectories leading exactly to the lower particle 
stagnation point, like that in figure 5(a), for which the time dependence of the radial 
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FIGURE 4. The expulsion time of a particle released at a horizontal distance uo from the centre of the 
bubble in an air-fluidized bed. The time taken by a fluid particle in making one circuit of a closed 
streamline is shown for comparison. The sudden jumps in T,,,, correspond to sudden changes in the 
number of circuits made by a particle before crossing the bubble boundary; compare figure 3(a). 
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FIGURE 5 .  (a) One of the many trajectories that lead to the lower particle stagnation point on the z- 
axis, corresponding to the left-most spike in figure 4 at uo = 0.4518. (b) The position coordinates of 
a particle on the trajectory shown in (a) as functions of T. 

and axial coordinates (T, 2 are shown in figure 5(b), and give rise to divergences of csit 
manifested as auxiliary spikes on both sides of the central spike in figure 4. As S +  1 
all three particle stagnation points move towards the bubble centre, and for S > 1 the 
drag arising from the fluid flow is everywhere weaker than the gravitational force, so 
that particle stagnation points disappear. Thus, for S > 1, all trajectories represent 
monotonic fall under gravity which is perturbed but nowhere dominated by the gas 
flow (cf. figure 3d) .  
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FIGURE 6 .  The time Tg,, within which 90 % of the particles released initially at uniformly distributed 
points are expelled from a bubble in a gas-fluidized bed, shown (a) as a function of R, for several 
values of S and (6) as a function of S for several values of R,. The values of a indicated on the abscissa 
refer to air as the fluidizing fluid. 

Whereas particle expulsion may be attributed to centrifugal force for the smaller 
particles, the situation in figure 3 (d) corresponds more to particles literally falling 
through the floor of the bubble under gravity. This is clearly an effective expulsion 
mechanism, although it raises the question : are particles prevented from raining 
through the roof to take their place? A possible prevention mechanism is that 
suggested by Clift, Grace & Weber (1974), namely, that the upper interface is stabilized 
by the stagnation-point motion at the bubble surface, which tends to sweep 
perturbations of the interface aside before they have a chance to grow. However, for 
our purposes it is sufficient to note, from photographs like those in figure 1, that, 
empirically, particles do not rain through the roof. 

Although the trajectories give a good indication of the details of the particle motion, 
we should like to have some overall measure of the time taken by the bubble to become 
almost empty of particles. We have therefore calculated the paths of 10000 particles 
(this number being sufficient to ensure smooth statistics) initially distributed randomly 
with uniform probability density throughout the interior of the bubble and have 
ascertained the time To it takes for 90 YO of the particles to be expelled. Remember that 
the unit of time T is R/uo, that is, the time taken by the bubble to rise through a 
distance of one bubble radius. Note that there exist special initial positions for 
which the exit time is infinite (cf. the spikes in figure 4). Nevertheless, Go is a well- 
defined finite quantity. 

q0 is a function of the two dimensionless parameters S (effectively a measure of 
particle radius) and R,. Figure 6(a)  shows To as a function of R, for some given values 
of S, and figure 6(b)  shows the more interesting variation of To as a function of S for 
some given values of R,. The change of slope of the curves in figure 6(b)  at values of 
S near 1 (or of a near 60 pm) evidently corresponds to a change of regime of the particle 
trajectories. At smaller values of S the particles mostly make at least one circuit before 
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FIGURE 7. Log-log plot of Tgo as a function of S demonstrating the asymptotic proportionality of 
T,, to S-' in the limit S+O. 

exiting (see figure 3), whereas at larger values of S they mostly fall through the bottom 
of the bubble without making a circuit. 

Although exceedingly small values of S are compatible only with atypically small 
particle radii, it is worthwhile to extend the calculations to such values of S in order 
to form a link with an asymptotic relation for the limiting case where expulsion is very 
slow. For small S the particles follow the fluid motion closely, so that the particle 
acceleration is of order ut /R.  Moreover, the speed of fall relative to the fluid reduces 
to the Stokes-law value 2a2gp,/9,u. These two observations imply that both inertial 
spiralling and gravitational settling lead to a particle velocity relative to the fluid of 
order S in units of uo. This conclusion may also be reached from the dimensionless 
equation of motion (3.4), since the particle acceleration must approach the fluid 
acceleration as S - t  0 and this is possible only if 1 I/- Ul = O ( S ) ;  otherwise the last term 
accounting for viscous drag would become singular. The exit time starting from any 
initial position is thus of order S-l in units of R/uo, so that Tgp likewise must scale as 
S-l. Figure 7, which shows that log Go becomes linear in log Swith slope - 1 in the limit 
as S-tO, confirms the anticipated S-' scaling and thereby provides a check on the 
numerical calculations. 

Figure 8 shows an alternative plot, likely to be more useful in practice, of the value 
of Go as a function of particle radius a for several different values of the particle density 
pp and for values of ,u and pf appropriate to air at NTP as the fluidizing fluid. Given 
the particle density and fixed properties of the suspending fluid, each value of a 
uniquely determines the corresponding pair of parameters (S, Ed',), and thereby the 
expulsion time To.  As already noted, for the parameter values represented in figure 8 
the minimum gas velocity for fluidization is always small compared with W, which 
supports our order-of-magnitude estimate (2.6) and our assumption of small cloud 
thickness. 

It is seen from the trajectories for the larger values of a in figure 3 that the particles 
fall more or less vertically, their sedimentation being perturbed only a little by the 
circulatory fluid motion. The limiting case in which gravity dominates over viscous 
drag exerted by the circulatory flow is one for which the expulsion time can be 
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FIGURE 8. <,, as a function of a for several values of pp;  air-fluidized bed. The broken curve 

represents the asymptotic relation (4.2) for the case p p  = 8 g an-*. 

calculated explicitly, and furnishes a further check on the numerical calculations. Since 
the particles start with zero initial acceleration, they fall relative to the fluid with 
constant terminal speed V, determined by the nonlinear equation 

representing the balance between gravitational and drag forces. The fact that all 
particles have the same velocity implies that the cloud is simply displaced downwards 
as a whole. A straightforward geometrical calculation shows that 90 % of the particles 
have left the blob once they have collectively fallen through a distance of 1.458 times 
the blob radius R. Thus the expulsion time is given in units of the rise time R/u, by 

1.458R R 1.458(gR)l" qO-- -- 
v, l -  uo v, 

This is the equation of the broken curve added in figure 8 for the case p p  = 8 g ~ m - ~ ,  
and it is seen to approximate the calculated values of Go as the particle radius a 
becomes large. 

The conclusion to be drawn from figure 8 is that, for even the smallest particles 
considered, the bubble is more or less empty after the time taken to rise through several 
diameters. The smaller particles take longer to be expelled. 

Now that we have found that the centrifugal and gravitational forces on a particle 
in a buoyant compact blob are effective in expelling particles, we can suggest a reason 
why falling compact blobs containing particles with above-average concentration are 
not observed. The outcome of the primary and secondary instabilities of a uniform 
fluidized bed mentioned in $1 is likely to be the creation of compact blobs, some 
containing a smaller-than-average concentration of particles which rise under gravity 
and some a larger-than-average concentration which fall. In both cases an internal 



76 G .  K .  Batchelor and J .  M .  Nitsche 

circulation develops and centrifugal force tends to expel particles. In the case of the 
buoyant blobs the outcome is an empty bubble, but in the case of dense blobs the result 
of loss of particles due to centrifugal force is ultimately to bring the internal 
concentration of particles down to the same level as that in the surrounding bed. In 
short, bubbles are created by the expulsion of particles from a buoyant blob, but dense 
blobs lose their identity. There are no permanent ‘anti-bubbles’. 

5. The case of a liquid-fluidized bed 
Having found an expulsion mechanism which could account qualitatively for the 

existence of particle-free bubbles in a gas-fluidized bed, we now consider whether a 
similar mechanism is effective in the case of a liquid-fluidized bed. 

Different parameter values are relevant here. If we choose water as the typical liquid 
the dynamic viscosity of the fluid is now 0.010 g cm-’ s-l at NTP, larger than that for 
air by a factor 55. The fluid density is no longer small in comparison with that of a 
particle; and when specific numerical values are under consideration we shall take 

pf = 0.998 g cmP3, p,/pf = 1.5, 2,4, 8. 

Otherwise the specific values and assumptions will be the same as those for a gas- 
fluidized bed listed at the end of $2. 

Since the fluid density is now not small, virtual-mass effects must be allowed for in 
the equation of motion for a particle. This is analytically feasible only if the fluid 
motion about each particle is irrotational, and we shall assume this to be so in the 
expectation that the results are not qualitatively in error. The acceleration reaction on 
an isolated spherical particle is then 

where m, is the mass of displaced fluid and the two time derivatives denote rates of 
change of the particle and fluid velocity respectively following the motion of the 
particle (Batchelor 1967, $6.5). The equation of motion of a particle (3.1) should thus 
be replaced by 

dv du 
(rn+Lm )- = (m-m,)g-66npa(u-u)Dl,-,,+~m -. 

O dt Odt 

Part of the last term (namely fm, duldt) is a consequence of (5.1) and the remaining 
part (namely m, duldt) represents the ‘buoyancy’ force associated with the (locally) 
uniform pressure gradient in the fluid that causes it to accelerate in its circulatory 
motion. 

The particle relaxation time 7 here refers to a particle moving under the action of 
inertia of both particle and fluid and the fluid (viscous) drag, whence 

m+im, - 
7 = ~ - (1 +$)TO. 

6npa (5.3) 

If now we non-dimensionalize the equation of motion using the parameters R and uo 
as units, as in the case of a gas-fluidized bed, we obtain 

dV j (1-7)  V - U  d U  
dT  F S D,,-,,P - 

27 dT’ 
(1 +$q)-- = ~ - -  (5.4) 
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a ( P I  RO Rl S 

10 4.27 x 10-3 8.82 x loo 9.82 x 10-4 

30 1.08 x lo-' 2.65 x 10' 8.84 x 10-3 
20 3.31 x 1.76 x 10' 3.93 x 

40 2.45 x lo-' 3.53 x 10' 1.57 x 
50 4.58 x lo-' 4.41 x 10' 2.46 x 
60 7.57 x lo-' 5.29 x 10' 3.54 x 
70 1.15 x loo 6.18 x 10' 4.81 x 
80 1.63 x loo 7.06 x 10' 6.29 x lo-* 
90 2.22 x loo 7.94 x 10' 7.96 x 

100 2.91 x loo 8.82 x 10' 9.82 x 
150 7.87 x loo 1.32 x lo2 2.21 x 10-1 
200 1.53 x 10' 1.76 x lo2 3.93 x 10-1 
250 2.49 x 10' 2.21 x 102 6.14 x lo-' 
300 3.67 x 10' 2.65 x lo2 8.84 x 10-l 

TABLE 2. Values of the dimensionless parameters assuming water at 20 "C to be the suspending fluid, 
having density p, = 0.9982 g cm-a and viscosity ,u = 1.002 x lo-* g cm-' s-'. The particle density p, is 
taken to be 2.0 g ~ r n - ~ .  

where 1;1= p,/pp. This general equation, for which we have developed numerical 
procedures, reduces to (3.4) in the limit p f / p p  -+ 0. 

The particle trajectory depends on the dimensionless parameters 

although as before the Froude number F is always near unity for rising bubbles. In 
addition 

is a governing parameter, as before, and finally there is the new governing parameter 

It is clear from (5.5) that for similar values of a and R the important parameter S 
is much smaller for a liquid-fluidized bed in consequence of the much larger value of 
,u in that case. The reverse is true for the less important parameter R,, because pf/p for 
water is larger than the value for air by a factor 15. These comparisons may be seen 
in detail from table 1 giving values of S and R, for various values of a in the case of 
an air-fluidized bed and the similar table 2 for a water-fluidized bed. Judging by our 
experience with the case of an air-fluidized bed, both the smallness of S and the 
largeness of R, may be expected to result in a diminished tendency for particles to be 
thrown outward across the bubble boundary. Smallness of S is equivalent to 
diminished particle inertia. Largeness of R, results in decreased motion of particles 
relative to the fluid owing to the greater drag implied by (2.3) relative to Stokes' law. 
Both effects cause the particles to follow the fluid more closely. There is a third reason 
why particle expulsion is weaker, in this case of a liquid-fluidized bed, associated with 
the additional term $m0 du/dt in the equation of motion (5.2). This contribution to the 
force on a particle is everywhere directed inwards towards the centre of the nested 
closed streamlines of the fluid motion in a plane through the axis of symmetry, as 
shown in figure 9. 

Note that the assumption N / S  4 1 (where N is the particle mass loading q5pp/pf) is 

7 = P f / P P .  
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FIGW 9. Lines everywhere parallel to the fluid acceleration dU/dT appearing in the equation of 
motion (5.4). 
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FIGURE 10. T o  as a function of a for several values of p p ;  water-fluidized bed. 

better satisfied here, essentially because p/pf for water is smaller than for air by a factor 
1/15. Thus the fluid velocity distribution is not affected significantly by the presence of 
the particles, whereas in the case of the air-fluidized bed that was uncertain. 

We have made numerical calculations of particle trajectories governed by the 
equation (5.4) like those described in $4 but with values of ,u and pr appropriate to 
water. The results for the expulsion time shown in figure 10 are qualitatively similar, 
but there is a big difference between the values of the exit time for the two fluidizing 
fluids, those for the case of water being larger. Most of the particles evidently fall 
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FIGURE 11. Comparison of expulsion time Go as a function of particle radius u for air and water as 
the suspending fluid. At a given particle density pp and radius a, TOs for the water-fluidized bed is at 
least ten times as large as the corresponding value for the air-fluidued bed. 

through the bottom of the bubble without first making any circuit when a > 60 pm for 
p p  = 1 g cm-3 in the case of air as the fluidizing fluid, but similarly rapid expulsion does 
not occur until a > 150 pm with the much larger particle density p p  = 8 g in the 
case of water. Figure 11 shows the time for 90 YO of 10000 particles of specified radius, 
initially placed randomly in the bubble, to cross the bubble boundary, for each of the 
two fluids. In practical terms, the expulsion mechanism is very weak for a water- 
fluidized bed and is unlikely to produce easily recognized effectively empty bubbles. It 
is thus understandable that bubbles of clear fluid have been observed in gas-fluidized 
beds but apparently not in liquid-fluidized beds. 

6. The effect of particle interactions 
It remains to make the promised attempt to estimate the effect of hydrodynamic 

interaction of the particles in the bubble. The attempt will be based on the empirical 
relation (2.4) which specifies the dependence, on both q5 and R,, of the mean particle 
velocity l$ relative to the mean volume-flux velocity of the fluid in the case of an 
unbounded statistically homogeneous dispersion of particles with concentration q5 on 
which a steady uniform force acts. 

To enable the relation (2.4) to be used we assume that: 
(a) the particle spacing is small compared with the bubble radius and the particle 

dispersion is locally homogeneous within the bubble ; 
(b) the equation of mean motion of particles at a point in the bubble is of the same 

form as (5.2) (or its non-dimensional version (5.4)) in which tr and u now stand for the 
local mean particle and (superficial) fluid velocity respectively ; 

(c) the mean fluid velocity in (5.2) can again be identified with the velocity 
distribution (2.5) appropriate to a pure fluid; and 
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FIGURE 12. Go as a function of S. The solid curves represent non-interacting particles, and the broken 
curves, displaced to the right from the corresponding solid curves, allow approximately for the effect 
of interactions at a particle concentration C = 0.2. (a) Parameter values representative of gas-fluidized 
beds; (b) parameter values representative of liquid-fluidized beds. 

(d)  only the second term on the right-hand side of (5.2) is affected by particle 
interactions. 

Assumptions (b) and (c) are expedient, and (d) rests on the intuitive notion that the 
primary effect of particle interactions is to increase the resistance to motion of the 
particles relative to the fluid. 

The meaning of (2.4) is that the average relative velocity of particles and fluid in a 
homogeneous dispersion with particle concentration 4 generated by a uniform force on 
the particles is smaller by a factor (1 - q5)n than its value in the absence of particle 
interactions. It follows therefore from our assumptions that inclusion of the effect of 
hydrodynamic interaction of the particles leaves unchanged the non-dimensional 
equation of motion (5.4) except that the parameter S is replaced by 

All our previous calculations of Tg, as a function of S, R, and q( = pf/pp) thus remain 
valid when particle interactions are allowed for, provided these results for a given value 
of S are regarded now as applicable to the same value of S+. 

Figure 11 shows that, when 6 = 0, Go is a decreasing function of S almost 
everywhere, so that the effect of particle interactions is generally to increase Tg,, for both 
air and water as the fluidizing fluid, as expected from our assumption that the primary 
consequence of interactions is to increase the resistance to relative motion of the 
particles and the fluid. Quantitatively we allow for the effect of particle interactions 
simply by translating the curves Tg, us. log,, S along the abscissa through a 'distance' 
log,,(l-q5)-", as indicated in figure 12(a, b) for the value 6 = 0.2. This figure shows 
the effect of particle interactions through the dependence of Tg, on S for given R, (and 
7 where applicable) over ranges of the parameters appropriate to gas (a) and liquid (b) 
as the suspending fluid. A slight complication is introduced by the dependence of the 
Richardson-Zaki exponent n on the particle Reynolds number R,, for in the presence 
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of interactions R, represents a further dimensionless parameter, additional to S, R, and 
7, that must be specified in order to determine Go. In practice, as is evident from tables 
1 and 2, variations of S are accompanied by variations in 02, (from small values to 
R, = O(10) for air under the conditions represented in figure 8; from small values to 
R, = O(100) for water under the conditions represented in figure 10). Thus the 
exponent n cannot strictly be regarded as constant along any of the curves. However, 
n depends rather weakly on R, (changing by a factor less than 2 over the entire range 
from R, +O to R, + oo), and we have elected for simplicity to use a representative 
value, namely n = 4 for gas-fluidized beds and n = 3.5 for liquid-fluidized beds. With 
these choices, figure 12 represents our rough allowance for the effects of particle 
interactions. 

The conclusions to be drawn from this figure, and similar calculations for other 
values of the parameters, are that, first, for gas-fluidized beds, particle interactions can 
increase the expulsion time by a factor as large as about 5 ;  however, even when 
interactions are allowed for, the blob becomes more or less empty within the time 
required for it to rise through 10radii. Second, for liquid-fluidized beds, particle 
interactions can increase the expulsion time by a factor as large as about 2. 
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